本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。
大家好,我是小彭。
今天下午有力扣杯战队赛,不知道官方是不是故意调低早上周赛难度给选手们练练手。
【资料图】
T1. 找出不同元素数目差数组(Easy)
标签:模拟、计数、散列表
T2. 频率跟踪器(Medium)
标签:模拟、计数、散列表、设计
T3. 有相同颜色的相邻元素数目(Medium)
标签:模拟、计数、贪心
T4. 使二叉树所有路径值相等的最小代价(Medium)
标签:二叉树、DFS、贪心
T1. 找出不同元素数目差数组(Easy)https://leetcode.cn/problems/find-the-distinct-difference-array/
题解(前后缀分解)问题目标:求每个位置前缀中不同元素个数和后缀不同元素个数的差值;观察数据:存在重复数;解决手段:我们可以计算使用两个散列表计算前缀和后缀中不同元素的差值。考虑到前缀和后缀的数值没有依赖关系,只不过后缀是负权,前缀是正权。那么,我们可以在第一次扫描时将后缀的负权值记录到结果数组中,在第二次扫描时将正权值记录到结果数组中,就可以优化一个散列表空间。写法 1:
class Solution { fun distinctDifferenceArray(nums: IntArray): IntArray { val n = nums.size val ret = IntArray(n) val leftCnts = HashMap() val rightCnts = HashMap() for (e in nums) { rightCnts[e] = rightCnts.getOrDefault(e, 0) + 1 } for (i in nums.indices) { val e = nums[i] leftCnts[e] = leftCnts.getOrDefault(e, 0) + 1 if (rightCnts[e]!! > 1) rightCnts[e] = rightCnts[e]!! - 1 else rightCnts.remove(e) ret[i] = leftCnts.size - rightCnts.size } return ret }}
写法 2:
class Solution { fun distinctDifferenceArray(nums: IntArray): IntArray { val n = nums.size val ret = IntArray(n) val set = HashSet() // 后缀 for (i in nums.size - 1 downTo 0) { ret[i] = -set.size set.add(nums[i]) } set.clear() // 前缀 for (i in nums.indices) { set.add(nums[i]) ret[i] += set.size } return ret }}
复杂度分析:
时间复杂度:$O(n)$ 其中 n 为 nums 数组的长度;空间复杂度:$O(n)$ 散列表空间。T2. 频率跟踪器(Medium)https://leetcode.cn/problems/frequency-tracker/
题解(散列表)简单设计题,使用一个散列表记录数字出现次数,再使用另一个散列表记录出现次数的出现次数:
class FrequencyTracker() { // 计数 private val cnts = HashMap() // 频率计数 private val freqs = HashMap() fun add(number: Int) { // 旧计数 val oldCnt = cnts.getOrDefault(number, 0) // 增加计数 cnts[number] = oldCnt + 1 // 减少旧频率计数 if (freqs.getOrDefault(oldCnt, 0) > 0) // 容错 freqs[oldCnt] = freqs[oldCnt]!! - 1 // 增加新频率计数 freqs[oldCnt + 1] = freqs.getOrDefault(oldCnt + 1, 0) + 1 } fun deleteOne(number: Int) { // 未包含 if (!cnts.contains(number)) return // 减少计数 val oldCnt = cnts[number]!! if (0 == oldCnt - 1) cnts.remove(number) else cnts[number] = oldCnt - 1 // 减少旧频率计数 freqs[oldCnt] = freqs.getOrDefault(oldCnt, 0) - 1 // 增加新频率计数 freqs[oldCnt - 1] = freqs.getOrDefault(oldCnt - 1, 0) + 1 } fun hasFrequency(frequency: Int): Boolean { // O(1) return freqs.getOrDefault(frequency, 0) > 0 }}
复杂度分析:
时间复杂度:$O(1)$ 每个操作的时间复杂度都是 $O(1)$;空间复杂度:$O(q)$ 取决于增加的次数 $q$。T3. 有相同颜色的相邻元素数目(Medium)https://leetcode.cn/problems/number-of-adjacent-elements-with-the-same-color/description/
题目描述给你一个下标从0开始、长度为n
的数组nums
。一开始,所有元素都是未染色(值为0
)的。
给你一个二维整数数组queries
,其中queries[i] = [indexi, colori]
。
对于每个操作,你需要将数组nums
中下标为indexi
的格子染色为colori
。
请你返回一个长度与queries
相等的数组**answer
**,其中**answer[i]
是前i
个操作之后,相邻元素颜色相同的数目。
更正式的,answer[i]
是执行完前i
个操作后,0 <= j < n - 1
的下标j
中,满足nums[j] == nums[j + 1]
且nums[j] != 0
的数目。
示例 1:
输入:n = 4, queries = [[0,2],[1,2],[3,1],[1,1],[2,1]]输出:[0,1,1,0,2]解释:一开始数组 nums = [0,0,0,0] ,0 表示数组中还没染色的元素。- 第 1 个操作后,nums = [2,0,0,0] 。相邻元素颜色相同的数目为 0 。- 第 2 个操作后,nums = [2,2,0,0] 。相邻元素颜色相同的数目为 1 。- 第 3 个操作后,nums = [2,2,0,1] 。相邻元素颜色相同的数目为 1 。- 第 4 个操作后,nums = [2,1,0,1] 。相邻元素颜色相同的数目为 0 。- 第 5 个操作后,nums = [2,1,1,1] 。相邻元素颜色相同的数目为 2 。
示例 2:
输入:n = 1, queries = [[0,100000]]输出:[0]解释:一开始数组 nums = [0] ,0 表示数组中还没染色的元素。- 第 1 个操作后,nums = [100000] 。相邻元素颜色相同的数目为 0 。
提示:
1 <= n <= 105
1 <= queries.length <= 105
queries[i].length== 2
0 <= indexi<= n - 1
1 <= colori<= 105
问题结构化1、概括问题目标
计算每次涂色后相邻颜色的数目个数(与前一个位置颜色相同)。
2、观察问题数据
数据量:查询操作的次数是 10^5,因此每次查询操作的时间复杂度不能高于 O(n)。3、具体化解决手段
手段 1(暴力枚举):涂色执行一次线性扫描,计算与前一个位置颜色相同的元素个数;手段 2(枚举优化):由于每次操作最多只会影响 (i - 1, i) 与 (i, i + 1) 两个数对的颜色关系,因此我们没有必要枚举整个数组。题解一(暴力枚举 · TLE)class Solution { fun colorTheArray(n: Int, queries: Array): IntArray { // 只观察 (i - 1, i) 与 (i, i + 1) 两个数对 if (n <= 0) return intArrayOf(0) // 容错 val colors = IntArray(n) val ret = IntArray(queries.size) for (i in queries.indices) { val j = queries[i][0] val color = queries[i][1] if (j < 0 || j >= n) continue // 容错 colors[j] = color for (j in 1 until n) { if (0 != colors[j] && colors[j] == colors[j - 1]) ret[i] ++ } } return ret }}
复杂度分析:
时间复杂度:$O(n^2)$ 每个操作的时间复杂度都是 O(n);空间复杂度:$O(n)$ 颜色数组空间。题解二(枚举优化)class Solution { fun colorTheArray(n: Int, queries: Array): IntArray { // 只观察 (i - 1, i) 与 (i, i + 1) 两个数对 if (n <= 0) return intArrayOf(0) // 容错 val colors = IntArray(n) val ret = IntArray(queries.size) // 计数 var cnt = 0 for (i in queries.indices) { val j = queries[i][0] val color = queries[i][1] if (j < 0 || j >= n) continue // 容错 // 消除旧颜色的影响 if (colors[j] != 0 && j > 0 && colors[j - 1] == colors[j]) cnt-- // 增加新颜色的影响 if (colors[j] != 0 && j < n - 1 && colors[j] == colors[j + 1]) cnt-- if (color != 0) { // 容错 colors[j] = color if (j > 0 && colors[j - 1] == colors[j]) cnt++ if (j < n - 1 && colors[j] == colors[j + 1]) cnt++ } ret[i] = cnt } return ret }}
复杂度分析:
时间复杂度:$O(n)$ 每个操作的时间复杂度都是 O(1);空间复杂度:$O(n)$ 颜色数组空间。相似题目:
567.字符串的排列T4. 使二叉树所有路径值相等的最小代价(Medium)https://leetcode.cn/problems/make-costs-of-paths-equal-in-a-binary-tree/
问题描述给你一个整数n
表示一棵满二叉树里面节点的数目,节点编号从1
到n
。根节点编号为1
,树中每个非叶子节点i
都有两个孩子,分别是左孩子2 * i
和右孩子2 * i + 1
。
树中每个节点都有一个值,用下标从0开始、长度为n
的整数数组cost
表示,其中cost[i]
是第i + 1
个节点的值。每次操作,你可以将树中任意节点的值增加1
。你可以执行操作任意次。
你的目标是让根到每一个叶子结点的路径值相等。请你返回最少需要执行增加操作多少次。
注意:
满二叉树指的是一棵树,它满足树中除了叶子节点外每个节点都恰好有 2 个节点,且所有叶子节点距离根节点距离相同。路径值指的是路径上所有节点的值之和。示例 1:
输入:n = 7, cost = [1,5,2,2,3,3,1]输出:6解释:我们执行以下的增加操作:- 将节点 4 的值增加一次。- 将节点 3 的值增加三次。- 将节点 7 的值增加两次。从根到叶子的每一条路径值都为 9 。总共增加次数为 1 + 3 + 2 = 6 。这是最小的答案。
示例 2:
输入:n = 3, cost = [5,3,3]输出:0解释:两条路径已经有相等的路径值,所以不需要执行任何增加操作。
提示:
3 <= n <= 105
n + 1
是2
的幂cost.length == n
1 <= cost[i] <= 104
问题结构化1、概括问题目标
计算将所有「根到叶子结点的路径和」调整到相同值的操作次数。
2、分析问题要件
在每一次操作中,可以提高二叉树中某个节点的数值,最终使得该路径和与所有二叉树中其他所有路径和相同。
3、观察问题数据
满二叉树:输入数据是数组物理实现的二叉树,二叉树每个节点的初始值记录在 cost 数组上;数据量:输入数据量的上界为 10^5,这要求算法的时间复杂度不能高于 O(n^2);数据大小:二叉树节点的最大值为 10^4,即使将所有节点都调整到 10^4 路径和也不会整型溢出,不需要考虑大数问题。4、提高抽象程度
最大路径和:由于题目只允许增加节点的值,所以只能让较小路径上的节点值向较大路径上的节点值靠;公共路径:对于节点「2」的子节点「4」和「5」来说,它们的「父节点和祖先节点走过的路径」必然是公共路径。也就是说,无论从根节点走到节点「2」的路径和是多少,对节点 A 和节点 B 的路径和的影响是相同的。是否为决策问题:由于每次操作可以调整的选择性很多,因此这是一个决策问题。5、具体化解决方案
如何解决问题?
结合「公共路径」思考,由于从根节点走到节点「2」的路径和对于两个子节点的影响是相同的,因此对于节点「2」来说,不需要关心父节点的路径和,只需要保证以节点「2」为根节点的子树上所有路径和是相同的。这是一个规模更小的相似子问题,可以用递归解决。
示意图
如何实现递归函数?
思考终止条件:当前节点为叶子节点时,由于没有子路径,所以直接返回;思考小规模问题:当子节点为叶子节点时,我们只需要保证左右两个叶子节点的值相同(如示例 1 中将节点「4」的值增加到 3)。由于问题的输入数据是满二叉树,所以左右子节点必然同时存在;思考大规模问题:由于我们保证小规模子树的路径和相同,所以在对比两个子树上的路径和时,只需要调大最小子树的根节点。至此,我们的递归函数框架确定:
全局变量 int ret// 返回值:调整后的子树和fun dfs (i) : Int {val sumL = dfs(L)val sumR = dfs(R)ret += max(sumL, sumR) - min(sumL, sumR) return cost[i] + max(sumL, sumR)}
6、是否有优化空间
我们使用递归自顶向下地分解子问题,再自底向上地求解原问题。由于这道题的输入是数组形式的满二叉树,对于数组实现的二叉树我们可以直接地从子节点返回到父节点,而不需要借助「递归栈」后进先出的逻辑,可以翻译为迭代来优化空间。
7、答疑
虽然我们保证子树上的子路径是相同的,但是如何保证最终所有子路径都和「最大路径和」相同?
由于我们不断地将左右子树的路径和向较大的路径和对齐,因此最终一定会将所有路径对齐到最大路径和。
为什么算法的操作次数是最少的?
首先,由于左右子树存在「公共路径」,因此必须把左右子树的子路径和调整到相同数值,才能保证最终所有子路径和的长度相同。
其次,当在大规模子树中需要增大路径和时,在父节点操作可以同时作用于左右子路径,因此在父节点操作可以节省操作次数,每个子树只关心影响当前子树问题合法性的因素。
题解一(DFS)根据「问题结构化」分析的递归伪代码实现:
class Solution { private var ret = 0 fun minIncrements(n: Int, cost: IntArray): Int { dfs(n, cost, 1) return ret } // i : base 1 // cost : base 0 // return: 调整后的子路径和 private fun dfs(n: Int, cost: IntArray, i: Int): Int { // 终止条件 if (i > n / 2) return cost[i - 1] // 最后一层是叶子节点 // 子问题 val leftSum = dfs(n, cost, i * 2) val rightSum = dfs(n, cost, i * 2 + 1) // 向较大的子路径对齐 ret += Math.max(leftSum, rightSum) - Math.min(leftSum, rightSum) return cost[i - 1] + Math.max(leftSum, rightSum) }}
复杂度分析:
时间复杂度:$O(n)$ 其中 n 为 节点数,每个节点最多访问 1 次;空间复杂度:$O(lgn)$ 递归栈空间,由于输入是满二叉树,所以递归栈深度最大为 lgn。题解二(迭代)由于输入数据是满二叉树,而且是以数组的形式提供,因此我们可以跳过递归分解子问题的过程,直接自底向上合并子问题:
class Solution { fun minIncrements(n: Int, cost: IntArray): Int { var ret = 0 // 从叶子的上一层开始 for (i in n / 2 downTo 1) { ret += Math.abs(cost[i * 2 - 1] - cost[i * 2]) // 借助 cost 数组记录子树的子路径和 cost[i - 1] += Math.max(cost[i * 2 - 1], cost[i * 2]) } return ret }}
复杂度分析:
时间复杂度:$O(n)$ 其中 n 为 节点数,每个节点最多访问 1 次;空间复杂度:$O(1)$ 仅使用常量级别空间。往期回顾
LeetCode 单周赛第 343 场 · 结合「下一个排列」的贪心构造问题LeetCode 单周赛第 342 场 · 把问题学复杂,再学简单LeetCode 双周赛第 102 场· 这次又是最短路。LeetCode 双周赛第 101 场 · 是时候做出改变了!